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A Chebyshev expansion technique is applied to Poisson’s equation on a square with 
homogeneous Dirichlet boundary conditions. The spectral equations are solved in two 
ways-by alternating direction and by matrix diagonalization methods. Solutions are 
sought to both oscillatory and mildly singular problems. The accuracy and efficiency of the 
Chebyshev approach compare favorably with those of standard second- and fourth-order 
finite-difference methods. 

1. INTR~DUCTJ~N 

Many physical problems require a numerical solution of the two-dimensional 
Poisson’s equation. On certain domains, such as rectangles, the so-called fast Poisson 
solvers that are now widely available (cf. the reviews by Dorr [l] and Swarztrauber [2]) 
provide a rapid solution of the standard five-point difference approximation to the 
partial differential equation. However, the resolution of these methods is inherently 
limited by their algebraic convergence, i.e., provided that the solution of the con- 
tinuous problem has continuous and bounded fourth partial derivatives (see, for 
instance, lsaacson and Keller [3, pp. 445-452]), the maximum error of the discrete 
approximation with N + 1 grid points in each direction decays as N-2. Because of 
this relatively slow rate of convergence, the storage requirements can be quite severe 
and the computational time rather long for very accurate calculations. 

In recent years spectral methods (cf. Gottlieb and Orszag [4]) have proven to be 
one way to manage the resolution problem, at least for smooth solutions in simple 
geometries. As discussed by Gottlieb and Orszag, the essence of the spectral approach 
is the expansion of the solution into a (truncated) series of smooth functions. The 
convergence of this approximation is governed by the rate of decay of the expansion 
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coefficients. The order of magnitude of these coefficients can be estimated by repeated 
application of integration by parts. If the basis functions are suitably chosen, the 
boundary terms from each integration by parts will vanish and thus one power of 
I/k will be added to the estimate of the kth coefficient. These integrations by parts 
can be repeated so long as the solution can continue to be differentiated. In particular, 
if the solution is infinitely differentiable, then the expansion coefficients will decrease 
faster than any finite power of l/k. Thus, the error made by retaining only a finite 
number N of the terms in the series will itself decrease faster than any finite power of 
l/N-the convergence of the spectral approximation will have an exponential rather 
than an algebraic character. On the other hand, if the solution has only a finite 
number of derivatives, then the spectral approximation is expected to converge 
algebraically, that is, like some finite power of I/N. 

In this paper we describe the application of the particular spectral method based 
on an expansion in Chebyshev polynomials to Poisson’s equation in a square with 
homogeneous Dirichlet boundary conditions: 

4% Y) = f(x, Y>, /xl, IYI < 1, 

4x, Y> = 0, /XI = 1, IyI = 1. 
(1) 

For these basis functions the boundary terms arising from repeated integrations by 
parts necessarily vanish. In this crucial respect, Chebyshev polynomials are superior 
to trigonometric functions since the corresponding boundary terms of the latter 
do not all vanish, not even for homogeneous boundary conditions. Thus an expansion 
in Chebyshev polynomiais can be much more rapidly convergent than an expansoin 
in, say, sine functions. After presenting a general formulation of the method, we will 
give several examples, illustrating both the exponential convergence for an infinitely 
differentiable solution and the algebraic convergence for a solution with some 
unbounded derivatives. The accuracy and speed of this spectral method will be 
compared with those of the standard finite-difference approximation. 

2. FORMULATION 

In the Chebyshev spectral approach to the two-dimensional Poisson equation, 
both u and fare approximated by truncated double Chebyshev series, 

where the polynomials T,(x) can be expressed as 

T,(x) = cos(n cos-l x). (3) 
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Following Orszag’s [5] use of the recurrence relations for derivatives of Chebyshev 
polynomials, the partial differential equation (1) can be used to obtain the relationship 

1 N 
c, ,,=;+2 p(p2 - n”) apIn -t $ 4(q2 - m”) ano = .L , 

4=n1+2 
rj--n(mod 2) y=m(mod 2) 

O<n<N-2, Q<m<N-2, (4) 

where c0 = 2 and c, = 1 for n 3 I, between the coefficients of the solution and the 
source. The notation p -5 n (mod 2) means that the sum includes every other term, 
e.g., p = n + 2, n + 4, etc. The boundary conditions and the property T,( f 1) = 
(*I>” imply 

If avln = f a,,,,, = 0, 0 < MI < N, (5) 
,,=o 

p:-ocmod 2) II-l(mod 2) 

a,, = ana = 0, 0 < n < N. 
q=O f7=1 

n-ofmod 2) v Elfmod 2) 

(6) 

Equations (5) and (6) give only 4N independent equations since the four corners of 
the square have been counted twice. Hence, when the boundary conditions are 
combined with Eq. (4), the (N + 1) x (N + 1) coefficients anm , for 0 < n, m < N, 
are completely determined. As explained by Orszag [5], this approach of truncating 
the exact, infinite Chebyshev expansion for u(x, y) by dropping the equations for the 
highest modes from Eq. (4) and determining them directly from the boundary 
conditions amounts to Lanczos’ tau method [6]. 

Equations (4)-(6) can be written more compactly as 

Aa+aAT =A (7) 

where a and f denote matrices with the entries aam and fnm , 0 < n, m < N - 2, and 
A is a matrix representing the Chebyshev approximation to a2/ax2 with homogeneous 
boundary conditions, i.e., Aa represents the first term in Eq. (4) with the boundary 
conditions of Eq. (5) used to eliminate aN-I,m. and aN,n for 0 < m ,< N - 2. The 
y-derivatives in Eq. (4) appear above in the term aAT, where AT denotes the transpose 
of the matrix A. 

The successful implementation of this scheme requires efficient numerical procedures 
for converting between the physical and spectral representations of u and f and for 
solving the linear system of equations for anm . 

The Fast Fourier Transform [7] is well suited to the first task since the Chebyshev 
expansion is, in effect, a cosine sum in terms of the variables (cos-r x, cosl y). 
We thus focus just upon the points (xi , yJ = (cos rri/N, cos rrj/N), 0 < i, j < N, and 
view Eq. (2) as a pair of discrete Fourier series. Then, for suitable values of N such 
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as powers of 2, the Fast Fourier Transform enables us to evaluate the solution U(X, y) 
rapidly at these discrete points via 

ZI(COS~,COS~) = 2 f U,,COS~COS~, 0 < i,,j < N, (8) 
n=o m-0 

and to approximate efficiently the Chebyshev coefficients of the source f(x, JJ) as 

where T, = C,,, = 2andci= I,1 <i<N-1. 

3. AN ADI SOLUTION TECHNIQUE 

The choice of a procedure for solving the linear system of equations (7) is less 
clear-cut. We present here several alternatives. In some situations an attractive 
method is alternating direction implicit (ADI) iteration [8] which can provide an 
exact, as well as a reasonably fast approximate, solution to Eq. (7). Tn the ADI scheme 
an initial guess a0 is made, and the iteration proceeds according to the prescription 

(WJ + A) a”+: = U”(W,Z - AT) +f, (10) 

u~+yw,z + AT) = (0,Z - A) u”tk +f, (11) 

where 1 is the identity matrix and w, is the iteration parameter for the vth stage. 
Each of the two steps in the single iteration described by Eqs. (10) and (11) is fairly 

simple to manage. To illustrate, consider the first equation. Clearly, it can be de- 
composed into N + I separate systems, one for each value of m. To solve these 
systems, it is convenient to reintroduce LZ~-~,~ and LZ~,~ by means of Eq. (5) and then 
to manipulate Eq. (10) into the form (see, for instance, Haidvogel [9, pp. 137-1401) 

G-2 I__ a:?~,, + u;:: - co, I 
W”4n(n- 1) 

v+t qn2 _ 1) GL,m + WV 
1 v+: 

4n(n + 1) un+2,m (12) 

G-2 

4n(n - 1) hYn--2.m - l Kwl + l 2(n” - 1) 4n(n + 1) h”,+,*wl (2 < n < N), 

where 
hY = U~(W,Z - AT) +.f (13) 

and it is understood that the Iast term on each side of Eq. (12) is dropped for n 3 
N - 3 and the next to last term for IZ > N - 1. 

Note that both here and in Eq. (5) the even and odd terms (in n) are uncoupled 
and thus they may be handled separately. The first step of the iteration, then, produces 
2(N - 1) systems in at most (N + I)/2 variables. Each of these systems consists of a 
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tridiagonal set of equations accompanied by a row of l’s arising from the boundary 
conditions. These quasitridiagonal systems, as we shall call them, are solved by a 
Gaussian elimination process tailored to their special structure. In practice, we have 
found pivoting to be unnecessary for this process. In addition, the LU factorization, 
independent of m, need be performed only once (for m = 0 for instance). Hence, the 
bulk of the work occurs in the N + I separate “backsolving” calculations. One 
complete iteration of the ADI process (comprising one sweep in each direction) 
requires approximately 2N2 divisions, 20N2 multiplications, and 18Nz additions. 
The solution of the quasitridiagonal equations themselves accounts for all the 
divisions, 6N2 multiplications, and 8N2 additions. The rest of the operations occur 
in the evaluation of hY and in the computation of the right-hand side of Eq. (12). 
Note that the matrix multiplication aVAT occurring in Eq. (13) can be accomplished 
in O(N2) operations. This matrix expression corresponds to the second term in Eq. (4), 
from which it is apparent that the requisite sums can be evaluated recursively. 

The final practical consideration is the choice of the iteration parameters w, . As 
is the case for AD1 applied to a finite-difference approximation of Poisson’s equation 
(see, for instance, Isaacson and Keller [3, pp. 475-478]), the exact solution to the 
algebraic equation (7) can be obtained after N - I stages if w, , v = 0, l,..., N - 2 
are chosen to be the eigenvalues A, of A. In fact, the exact AD1 solution can be obtained 
in $N iterations rather than N - 1. This is accomplished by using the even-odd 
uncoupling of the coefficients anm to factor Eq. (7) into four separate equations: 
n and m even; n odd, m even; n even, m odd; and n and m odd. Each of these equations 
can be solved exactly by using just the even or just the odd eigenvalues, as appropriate, 
as iteration parameters. 

We also observe that an approximate ADI solution can be obtained by some 
other choice of the iteration parameters. The spectrum of A furnishes some hints 
for this. The smaller eigenvalues of A are clearly just good approximations to 
h n = -&z2n2, the eigenvalues of a2u/ax2 = Xu with ~(-1) = u(l) = 0. At the 
other extreme, Gershgorin’s theorem implies that the very largest eigenvalues increase 
as N4. Empirically, we find that h,-, and &,-, are within a few percent of each other, 
with h,vp, - 0.303N”, while A,-, is a factor of 20 smaller. This suggests that a good 
approximate solution to Eq. (7) can be obtained by setting W” = h,vp2, w1 X A,“-, 
and then distributing the remaining W, , Y = 2, 3 ,..., Z - I, between X,-, and h, , 
where a total number of Ziterations of the AD1 process are used. For the purpose of 
picking the Z ~ 2 iteration parameters in the range spanned by A,“-, and h, we have 
used the procedure described by Varga [lo], in which 

w, = hN-4(hO/hN-4)(2Y-3)i(2’-4), v - 2, 3 )...) z - 1 . (14) 

In the special case Z - 2 = 2”, the Wachspress [l l] parameters are another possible 
choice. 

When the AD1 scheme is used to obtain the exact solution of Eq. (7), some pre- 
processing is required in order to find the eigenvalues X, . However, the cost of this 
overhead is minor-less than 10 “/, of the remaining cost of solving Eq. (7). If the 
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eigenvalues are stored and used for repeated solutions of Poisson’s equation, this 
overhead is entirely trivial. It is even less for the approximate AD1 method, for only 
the largest several eigenvalues are needed, and even they can be approximated well 
by a power series in l/N (starting with N4). 

4. A MATRIX DIAGONALIZATION SOLUTION TECHNIQUE 

In this section we describe another method of solving the matrix equation (7). This 
alternative scheme is an order of magnitude more efficient than ADI, but it requires 
a large amount of preprocessing. As demonstrated by Murdock [12] and Haidvogel, 
Schulman, and Robinson [13], however, it is nicely suited to problems in which 
repeated solutions of Poisson’s equation are required, as for instance, in time- 
dependent problems for which the forcing functionfchanges at each time step. 

As has been demonstrated above, matrix equations of the form (10) or (11) can be 
rewritten as quasitridiagonal systems and inverted quite easily. As it stands, this is 
not true of Eq. (7) in which the x- and y- derivative terms are treated simultaneously 
rather than individually as in ADI. However, Eq. (7) can be cast in quasitridiagonal 
form by the following diagonalization procedure. Consider B, the (N + 1) x (N + 1) 
matrix of coefficients representing the Chebyshev approximation to a2/ax2 [Eq. (4), 
first term] with the homogeneous boundary conditions (5). Corresponding to B are 
N - 1 nonzero eigenvalues h, , v = 0, l,..., N - 2, and the matrix e of eigenvector 
coefficients e,, . Together, these satisfy the equation 

Be = ed, 

where /1 is the (N - 1) x (N - I) matrix whose diagonal elements are the eigen- 
values X, . Both e and rl can be calculated via standard eigensystem routines; we have 
used EISPACK [14] for this purpose. In terms of the T,(x), therefore, 

are the eigenfunctions of the discrete a2/ax2 operator. 
The partial diagonalization of Eq. (7) is achieved by expanding u(x, u) and f(x, u) 

in the eigenfunctions V,(x): 

N-2 N 

24(x, y) = c c &7L~n(x) T?n(Y) 
and 

n=o n&=0 

N-2 N 

n=o m=o 

The coefficients g,, and fnm (0 < n < N - 2, 0 < m < N) are related by 
g” = g-y 

3 (16) 
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where g and f” are the matrices of coefficients g,, and fn,,, and 6-l is the (N - 1) x 

(N - 1) inverse of the matrix & (e minus its last two rows). The loss of information 
associated with truncating the matrix of eigenvector coefficients enm at n = N - 2 
is a further result of the tau approximation. 

In the new representation, the equation analogous to (7) is 

Ab + bBT = g. (17) 

It is identical in form to either of the ADI sweeps-Eq. (10) or (1 l)-except that the 
matrix WJ is replaced by L% Thus, it too can be decomposed into 2(N - 1) quasi- 
tridiagonal systems in at most &(N + 1) unknowns. The Chebyshev coefficients can 
be recovered from the solution of Eq. (7) by first performing the matrix multiplication 

a” = &b, (18) 

where d is the matrix anm (0 < n < N - 2, 0 < m < N), and then applying Eq. (6) 
to fix a,,, and aN-l,m for 0 < m < N. 

Apart from the preprocessing necessary to determine the X, and env for a given N 
(and a given set of boundary conditions), this methodology provides quite an efficient 
way to determine the exact solution to problem (1). In comparison to ADI, for which 
4(N - 1) quasitridiagonal systems must be solved for each of the 4N iterations 
required for the exact (discrete) solution, the eigenvector technique requires only 
,2(N - 1) solutions of quasitridiagonal systems. Thus, the matrix b can be found 
from Eq. (17) in O(N2) operations, a gain in efficiency of a factor N. This is partially 
offset by the overhead involved in computing the coefficient matrices g” and (z from 
Eqs. (16) and (18)-that is, in transforming spectral fields into the eigenvector repre- 
sentation and back again. These transformations require O(N3) operations, and 
hence account for most of the work in this method. For Poisson’s equation with 
Dirichlet boundary conditions, the eigenfunctions V,(X), though functions of T,(x), 
involve only the odd or only the even polynomials. As a result, the components of 8 
and d-l are alternatingly zero and nonzero. This property can be used to speed up the 
matrix multiplications by a factor of 2. Even including these linear transformations, 
the matrix diagonalization technique appears to offer roughly an order of magnitude 
increase in efficiency over the AD1 method (see Tables V and VI in the next section). 

Some mention should be made of the necessary preprocessing step in which the 
eigenvalues and eigenvectors of the discrete approximation to a2/ax2 (subject to the 
usual boundary conditions) are determined. First, these operations are quite costly, 
requiring in excess of two orders of magnitude more time than the solution of 
Poisson’s equation itself (Table VI). This technique, therefore, is efficient only for 
problems in which the number of required Poisson solutions is much larger than the 
number of preprocessing steps. Second, the accuracy of the resulting solution to the 
algebraic equations is limited by the accuracy of the preprocessing calculations. 
In particular, determining &-I could conceivably be difficult for a poorly conditioned 
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matrix 6. For the problem at hand, we have in fact calculated the condition number I(, 
given by 

KWIl’iX$!f+ 
3 ee 

for the matrix d [15]. For N = 32, K Y 18, indicating that the accuracy of our 
calculations should be limited only by computational round-off error. Indeed, the 
exact (discrete) solutions given by ADI and the matrix diagonalization method differ 
only in their least significant digits. 

Finally, we note that a third way of solving Eq. (7) is by the method based on 
Schur decomposition devised by Bartels and Stewart [16]. Although the computational 
time of this algorithm turned out to be somewhat shorter than that of ADI, we 
encountered the loss of from three to five digits in numerous examples. These digits 
can be recovered through the use of iterative refinement, but the computational time 
then exceeds that for ADI (which does not appear to suffer from round-off error), 
at least for N < 64. 

5. RESULTS 

We present here a comparison for three model problems between the Chebyshev 
expansion technique and both a second and a fourth-order finite-difference scheme. 
The second-order method is the usual five-point approximation to Poisson’s equation, 
solved by means of the cyclic reduction routines of the NCAR package [17]. Fourth- 
order results were obtained from these by the method of deferred corrections [18] in 
which the result, say u1 , of the five-point scheme is improved by subtracting off the 
lowest-order error remaining in the solution. Thus, the corrected u(x, y) is the 
solution (on the same grid) to the equation du = f + (l/12) h2(& - 2a4u,/ax2 ay2), 
where h is the mesh size and centered differences are used to approximate the derivative 
terms on the right-hand side. 

For the finite-difference methods the maximum pointwise error on the grid between 
the exact and calculated solutions is our measure of error. For comparison, the 
Chebyshev coefficients alzln obtained from the solution of Eq. (7) (by either the 
alternating direction or matrix diagonahzation methods) were Fourier transformed 
according to Eq. (8), yielding the spectral solution at the points (xi , JJJ = (cos S/N, 
cos yj/N). The maximum error at these discrete locations was then computed. 

The first example--f = -32~~ sin 4rx sin 4ny---tests the Chebyshev approxi- 
mation to a moderately oscillatory but otherwise well-behaved (infinitely differentiable) 
solution--u = sin 477x sin 47ry. This example will also serve to illustrate the conver- 
gence of the approximate iterative method for solving Eq. (7). The ADI process was 
begun with an initial guess u” obtained by Fourier transforming the known solution u 
by Eq. (9) and increasing those Chebyshev coefficients by 20%. Both complete 
(I = &N) and partial (I = 6, 10, 14, and 18) iterations were examined. 
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Consider first the complete iteration case, I = .$N, for which the Chebyshev 
equation (7) is solved exactly. The entries in the last column of Table 1 for N = 16,24, 
and 32 indicate the exponential convergence rate of the Chebyshev expansion. 
(The less impressive improvement in the last two rows presumably reflects the 
1Cdigit single-precision accuracy of the machine on which these calculations were 
performed-a CDC Cyber 175.) This rate of convergence has its source in the 
coefficients of the exact solution: unm = 4(c,c,)-l J,(47r) J,(4n) sin Qnn sin imrr, 
where J,(z) denotes the Bessel function of the first kind. The properties of Bessel 
functions as the order n (or m) is increased imply that anrn decrease exponentially fast. 

TABLE 1 

Maximum absolute error of the Chebyshev approximation when Au = f = -32d sin 437,~ sin 47i)l, 
as a function of the number of modes N in each direction and the number of ADI iterations I. 

I 6 10 14 18 &N 
N 

16 3.26 x 1O-2 3.33 x 10-Z 
24 3.92 x 1O-3 1.55 x 10-S 6.89 x 1O-6 
32 8.18 x 10-S 6.06 x 10-S 2.45 x lo-’ 4.77 x 10-11 
48 1.43 x 10-s 3.19 x IO-4 5.81 x 1O-6 4.74 x 10-a 1.90 x IO-‘2 
64 1.22 x 10-S 7.65 x 1O-4 1.13 x IO-5 4.65 x 1O-7 8.67 x lo-l3 

a The case 2 = +N gives the exact solution to the spectral equations. 

For the partial iterations, the parameters w, were distributed according to Eq. (14). 
The results in Table I indicate that with an initial error of 20 %, little if any savings 
can be made by using an approximate rather than an exact AD1 iteration. (We note 
here that for an initial error of 100 %, i.e., with u” = 0, the errors listed in Table I 
for the partial iterations would be no more than a factor of 5 larger). The approximate 
AD1 method may be useful, however, when a good initial guess is available, as some- 
times occurs when Poisson’s equation is one part of a time-dependent calculation. 

The comparison with the finite difference methods is reported in Table II. For the 
well-behaved solution of this first example, the Chebyshev approximation is markedly 
superior. This is illustrated most dramatically by the improvement between N = 16 
and N = 32: the error of the second-order scheme is reduced by a factor of 4, that 
of the fourth-order scheme by a factor of 16, and that of the spectral method by a 
factor of log. 

As one would expect from the theory of spectral methods, this extremely rapid 
convergence is representative of the performance of the Chebyshev expansion for 
solutions which are infinitely differentiable. We have obtained equally impressive 
results for other analytic solutions such as six of the test problems considered by 
Houstis and Papatheodorou [19]. In all but one of those cases 16 Chebyshev poly- 
nomials in each direction already produced an approximate solution which is more 
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TABLE II 

Maximum absolute error of the second-order finite difference (FD2), deferred correction (FD4), 
and spectral (alternating direction or matrix diagonalization: ADI/MD) approximations to 
Au = -32~~ sin(4rrx) sin(4ny) as a function of the number of degrees of freedom N in each direction. 

N FD2 FD4 ADI/MD 

16 2.34 x 10-l 2.81 x lo-% 3.33 x 10-Z 
32 5.30 x 10-S 1.63 x 1O-3 4.77 x lo-” 
64 1.30 x 10-a 9.97 x 10-S 8.67 x lo-l3 

128 3.22 x 1O-3 6.21 x IO-’ 2.00 x 10-12 

accurate than could be obtained from an N = 2048 second-order finite difference 
scheme. 

We next tested the Chebyshev approximation to the problem Au = 1, a case for 
which the solution u does not oscillate (in fact, it is monotonic, assuming its minimum 
value of u N -0.294 at the origin and increasing toward zero at the boundaries) 
but does have some singular behavior. The irregularity occurs near each of the 
four corners, where the partial differential equation insists that du = 1 but the 
boundary conditions require that du vanish. This means that u = O(P In r) as Y + 0, 
where r is the distance from a corner [20]. The exact solution can be expressed as the 
doubly infinite cosine series 

?l=l 
n=limod 2) m=l(mod 21 

t(n+mj cos &vrx cos $rnz-y 
nm(nz + m”) . 

(The task of computing this sum numerically can be eased greatly by performing one 
of the sums by means of residue calculus.) The results for this example are presented 
in Table III. Note that both difference schemes exhibit second-order convergence, 
in contrast to the fourth-order behavior of the spectral approximation. The deterior- 
ation of the convergence rates of the last two methods is clearly a manifestation of the 
corner singularities. They invalidate the higher-order terms of the asymptotic expan- 

TABLE III 

Same as Table II except for the problem Au = 1. 

N FD2 FD4 ADI/MD 

16 9.02 x 10-a 7.17 x 10-e 3.52 x 1O-5 
32 2.26 x 1O-4 1.79 x 10-a 2.23 x 1O-6 
64 5.67 x 1O-6 4.48 x lo-’ 1.40 x 10-7 

128 1.42 x 1O-5 1.12 x lo-’ 8.72 x IO-s 
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sion in h2 upon which the method of deferred corrections depends and they cause the 
Chebyshev coefficients to decay algebraically-roughly as R6-rather than exponen- 
tially. As one might expect, the maximum error of these two schemes occurs near the 
boundary. In fact, regardless of N, the maximum error of the deferred corrections’ 
scheme occurs at (x, y) = (1 - h, 1 - h) and that of the Chebyshev scheme at 
(x, y) = (0, cos rr/N). The deferred corrections method is surprisingly accurate in this 
example. Apparently, this occurs because the solution has only a single, very gentle 
extremum. For a problem with both corner singularities and appreciable oscillations, 
however, the Chebyshev solution should be superior, not only to the second-order 
method but to the fourth-order one as well. Consider, for instance, the combination 
of the present right-hand side with that of the preceding example, i.e., f = 1 + 
sin 4nx sin 47ry. In the combined problem, an N > 32 Chebyshev expansion would 
be sufficient to insure a maximum pointwise error of less than lO-‘j, whereas in excess 
of 128 grid points would be required for comparable accuracy of the deferred correc- 
tions solution. 

As a final example we examine a problem for which the singularity occurs in the 
interior of the square rather than on the boundary. Consider the function u(x, y) = 
v(x) tl( y), where 

L(X) = 
I 
4(x + 11, x < 0, 
4x2 - ax _ $, x t 0. 

This solves du = f = H(x) v(y) + v(x) H(y), where H(x) is the unit step function 
centered at the origin. In this case, the second derivatives of the solution are dis- 
continuous along both coordinate axes. The problem we actually address is one which 
mimics better the uncertainty that discrete methods have about the location of 
discontinuities in the source J The step functions are centered at x = y = +/I 
[and v(x) is adjusted accordingly] rather than at the origin; here, h = 2/N for the 
finite difference methods and h = sin r/N for the Chebyshev approximation. The 
The results are given in Table IV. All three methods display second-order convergence, 
with the spectral method appearing to converge at a slightly faster rate. For this 
somewhat extreme example the spectral method offers no advantage over even the 
usual five-point difference approximation. 

TABLE IV 

Same as Table II except for the problem du = H(x)+) + u(x)H(y). 

N FD2 FD4 ADI,‘MD 

16 4.98 x 10-d 1.67 x 1O-4 5.16 x 1O-4 

32 1.23 x 1O-4 4.14 x 10-S 1.26 x 1O-4 

64 3.08 x 1O-5 1.03 x 10-S 3.03 x IO-5 

128 7.66 x 1O-B 2.56 x 1O-6 7.39 x 10-s 
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The computational times on a CDC Cyber 17.5 of the second-order finite-difference 
method-using the NCAR routine PWSCRT-and the Chebyshev series approxi- 
mation-using the AD1 method-are listed in Table V. Both codes were in 
FORTRAN. The corresponding execution times for the method of deferred correc- 
tions are roughly 220 y0 of those for the second-order scheme. These times pertain 
just to the cost of solving the appropriate algebraic system of equations. The addi- 
tional cost of performing two FFT’s for the Chebyshev method-using an assembly 
language version of the one-dimensional FFT-ranges from 0.014 set for N = 16 
to 0.864 set for N = 128. 

Similar timings on a CDC 7600 for the NCAR code and the eigenvector method of 
solving Eq. (7) are given in Table VI. For this method the cost of the FFT’s is com- 
parable to that for solving the algebraic equations. We note that the preprocessing 
cost of the eigenvector method is quite substantial, e.g., greater than 8 set for N = 32. 
However, these preprocessing times are likely higher than necessary since we took 
extra care to compute the eigenvectors accurately. If the Poisson’s equation itself is not 
being solved to full machine accuracy, then cruder, and therefore less costly, eigen- 
vectors will suffice. 

TABLE V 

Execution time in seconds for the solution of Poisson’s equation on the Cyber 175 by second-order 
finite-difference (FD2) and the alternating direction spectral (ADI) methods as a function of the 

number of degrees of freedom N in each direction. 

N FD2 AD1 

16 0.009 0.059 
32 0.046 0.466 
64 0.211 3.689 

128 0.968 29.130 

TABLE VI 

Execution time in seconds for the solution of Poisson’s equation on the CDC 7600 by second-order 
finite-difference (FD2) and matrix diagonalization spectral (MD) methods as a function of the 

number of degrees of freedom N in each direction. 

N FD2 MD 

16 0.010 0.007 (2.7) 
32 0.046 0.014 (8.1) 
64 0.215 0.254 (77.5) 

o Approximate preprocessing times associated with the matrix diagonalization technique are given 
in parentheses. 
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As both the general theory of the convergence of spectral methods suggests and the 
first example illustrates, whenever the solution u is infinitely differentiable, the 
Chebyshev expansion can achieve highly accurate solutions to Poisson’s equation 
far more efficiently than the standard finite-difference methods. Note also that the 
Chebyshev expansion technique makes less demands upon computer storage since 
fewer degrees of freedom are needed. Moreover, for solutions whose only singularities 
are those induced by the corners of the domain the Chebyshev approximation 
apparently converges faster than finite-difference methods. The advantage of this 
spectral method is less clear cut, however, when solutions of low accuracy can be 
tolerated. 

The Chebyshev expansion can be easily extended to handle both inhomogeneous 
boundary conditions and the Helmholtz equation du + Szu = f for constant Q. 
Moreover, it may also be applied to nonseparable problems of the type 
Y . [a(~, 1)) Vu] = f by using the iterative procedure devised by Concus and Golub [2 I] 
for finite-difference methods. The spectral method, however, has the added compli- 
cation of requiring a convolution sum of the Chebyshev coefficients at each iteration. 
It is advisable to use the transform methods described by Orszag [22] to evaluate 
this term. 

Spectral methods for Poisson’s equation, of course, need not be based on Chebyshev 
polynomials. In some applications an expansion in Legendre polynomials may be 
more appropriate. This spectral method would also exhibit exponential convergence, 
but it suffers from the lack of a fast transform such as the FFT. As noted in the 
introduction trigonometric functions are not as appropriate since the boundary terms 
arising from the integration by parts estimate of the expansion coefficients do not 
necessarily vanish. As shown by Skollermo [23], sine series expansions generally 
exhibit second-order convergence although their convergence rate may be improved 
by using special solutions. These methods take about as long as the finite-difference 
methods since the FFT can be employed. Nevertheless, the Fourier series solution 
will, in general, have a finite order of convergence, even for infinitely differentiable 
solutions. 
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